Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(15): 10509-10526, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38564478

ABSTRACT

Systemic exposure to starch-coated iron oxide nanoparticles (IONPs) can stimulate antitumor T cell responses, even when little IONP is retained within the tumor. Here, we demonstrate in mouse models of metastatic breast cancer that IONPs can alter the host immune landscape, leading to systemic immune-mediated disease suppression. We report that a single intravenous injection of IONPs can inhibit primary tumor growth, suppress metastases, and extend survival. Gene expression analysis revealed the activation of Toll-like receptor (TLR) pathways involving signaling via Toll/Interleukin-1 receptor domain-containing adaptor-inducing IFN-ß (TRIF), a TLR pathway adaptor protein. Requisite participation of TRIF in suppressing tumor progression was demonstrated with histopathologic evidence of upregulated IFN-regulatory factor 3 (IRF3), a downstream protein, and confirmed in a TRIF knockout syngeneic mouse model of metastatic breast cancer. Neither starch-coated polystyrene nanoparticles lacking iron, nor iron-containing dextran-coated parenteral iron replacement agent, induced significant antitumor effects, suggesting a dependence on the type of IONP formulation. Analysis of multiple independent clinical databases supports a hypothesis that upregulation of TLR3 and IRF3 correlates with increased overall survival among breast cancer patients. Taken together, these data support a compelling rationale to re-examine IONP formulations as harboring anticancer immune (nano)adjuvant properties to generate a therapeutic benefit without requiring uptake by cancer cells.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Animals , Mice , Humans , Female , Breast Neoplasms/drug therapy , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 4/metabolism , Disease Models, Animal , Lung Neoplasms/drug therapy , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Iron , Starch , Magnetic Iron Oxide Nanoparticles
2.
Article in English | MEDLINE | ID: mdl-37860628

ABSTRACT

The dynamic nature of perfusion in living tissues, such as solid tumors during thermal therapy, produces challenging spatiotemporal thermal boundary conditions. Changes in perfusion can manifest as changes in convective heat transfer that influence temperature changes during cyclic heating. Herein, we propose a method to actively monitor changes in local convection (perfusion) in vivo by using a transient thermal pulsing analysis. Syngeneic 4T1 tumor cells were injected subcutaneously into BALB/c mice and followed by caliper measurements. When tumor volumes measured 150-400 mm3, mice were randomly divided into one of two groups to receive intratumor injections of one of two iron oxide nanoparticle formulations for pulsed heating with an alternating magnetic field (AMF). The nanoparticles differed in both heating characteristics and coating. Intratumor temperature near the injection site as well as rectal temperature were measured with an optic fiber temperature probe. Following heating, mice were euthanized and tumors harvested and prepared for histological evaluation of nanoparticle distribution. To ascertain the heat transfer coefficient from heating and cooling pulses, we fit a lumped capacitance, Box-Lucas model to the time-temperature data assuming fixed tumor geometry and constant experimental conditions. For the first particle set, the injected nanoparticles dispersed evenly throughout the tumor with minimal aggregation, and with minimal change in convection. On the other hand, heating with the second particle generated a measurable decline in convective performance and histology analysis showed substantial aggregation near the injection site. We consider it likely that though the second nanoparticle type produced less heating per unit mass, its tendency to aggregate led to more intense local heating and tissue damage. Further analysis and experimentation is warranted to establish quantitative correlations between measured temperature changes, perfusion, and tissue damage responses. Implementing this type of analysis may stimulate development of robust and adaptive temperature controllers for medical device applications.

3.
Nanotheranostics ; 7(4): 393-411, 2023.
Article in English | MEDLINE | ID: mdl-37426881

ABSTRACT

The biological influence of physicochemical parameters of "targeted" nanoparticles on their delivery to cancer tumors remains poorly understood. A comparative analysis of nanoparticle distributions in tumors following systemic delivery across several models can provide valuable insights. Methods: Bionized nanoferrite nanoparticles (iron oxide core coated with starch), either conjugated with a targeted anti-HER2 antibody (BH), or unconjugated (BP), were intravenously injected into athymic nude or NOD-scid gamma (NSG) female mice bearing one of five human breast cancer tumor xenografts growing in a mammary fat pad. Tumors were harvested 24 hours after nanoparticle injection, fixed, mounted, and stained. We performed detailed histopathology analysis by comparing spatial distributions of nanoparticles (Prussian blue) with various stromal cells (CD31, SMA, F4/80, CD11c, etc.) and the target antigen-expressing (HER2) tumor cells. Results: Only BH nanoparticles were retained in tumors and generally concentrated in the tumor periphery, with nanoparticle content diminishing towards the tumor interior. Nanoparticle distribution correlated strongly with specific stromal cells within each tumor type, which varied among tumor types and between mouse strains. Weak or no correlation between nanoparticle distribution and HER2 positive cells, or CD31 cells was observed. Conclusion: Antibody-labeled nanoparticles were retained across all tumors, irrespective of presence of the "target" antigen. Though presence of antibody on nanoparticles correlated with retention, non-cancerous host stromal cells were responsible for their retention in the tumor microenvironment. This study highlights gaps in our understanding of the complex biological interplay between disease and host immune biology, and the need to account for the influence of underlying aberrant tumor biology as factors determining nanoparticle fate in vivo.


Subject(s)
Breast Neoplasms , Magnetite Nanoparticles , Humans , Female , Mice , Animals , Heterografts , Magnetite Nanoparticles/chemistry , Mice, Inbred NOD , Spatial Analysis , Tumor Microenvironment
4.
Int J Mol Sci ; 23(24)2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36555306

ABSTRACT

A promise of cancer nanomedicine is the "targeted" delivery of therapeutic agents to tumors by the rational design of nanostructured materials. During the past several decades, a realization that in vitro and in vivo preclinical data are unreliable predictors of successful clinical translation has motivated a reexamination of this approach. Mathematical models of drug pharmacokinetics (PK) and biodistribution (BD) are essential tools for small-molecule drugs development. A key assumption underlying these models is that drug-target binding kinetics dominate blood clearance, hence recognition by host innate immune cells is not explicitly included. Nanoparticles circulating in the blood are conspicuous to phagocytes, and inevitable interactions typically trigger active biological responses to sequester and remove them from circulation. Our recent findings suggest that, instead of referring to nanoparticles as designed for active or passive "tumor targeting", we ought rather to refer to immune cells residing in the tumor microenvironment (TME) as active or passive actors in an essentially "cell-mediated tumor retention" process that competes with active removal by other phagocytes. Indeed, following intravenous injection, nanoparticles induce changes in the immune compartment of the TME because of nanoparticle uptake, irrespective of the nature of tumor targeting moieties. In this study, we propose a 6-compartment PK model as an initial mathematical framework for modeling this tumor-associated immune cell-mediated retention. Published in vivo PK and BD results obtained with bionized nanoferrite® (BNF®) nanoparticles were combined with results from in vitro internalization experiments with murine macrophages to guide simulations. As a preliminary approximation, we assumed that tumor-associated macrophages (TAMs) are solely responsible for active retention in the TME. We model the TAM approximation by relating in vitro macrophage uptake to an effective macrophage avidity term for the BNF® nanoparticles under consideration.


Subject(s)
Nanoparticles , Nanostructures , Neoplasms , Mice , Animals , Tissue Distribution , Macrophages/metabolism , Neoplasms/therapy , Nanoparticles/chemistry , Tumor Microenvironment
5.
Proc Natl Acad Sci U S A ; 119(24): e2200200119, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35675429

ABSTRACT

The human transferrin receptor (TFR) is overexpressed in most breast cancers, including preneoplastic ductal carcinoma in situ (DCIS). HB21(Fv)-PE40 is a single-chain immunotoxin (IT) engineered by fusing the variable region of a monoclonal antibody (HB21) against a TFR with a 40 kDa fragment of Pseudomonas exotoxin (PE). In humans, the administration of other TFR-targeted immunotoxins intrathecally led to inflammation and vascular leakage. We proposed that for treatment of DCIS, intraductal (i.duc) injection of HB21(Fv)-PE40 could avoid systemic toxicity while retaining its potent antitumor effects on visible and occult tumors in the entire ductal tree. Pharmacokinetic studies in mice showed that, in contrast to intravenous injection, IT was undetectable by enzyme-linked immunosorbent assay in blood following i.duc injection of up to 3.0 µg HB21(Fv)-PE40. We demonstrated the antitumor efficacy of HB21(Fv)-PE40 in two mammary-in-duct (MIND) models, MCF7 and SUM225, grown in NOD/SCID/gamma mice. Tumors were undetectable by In Vivo Imaging System (IVIS) imaging in intraductally treated mice within 1 wk of initiation of the regimen (IT once weekly/3 wk, 1.5 µg/teat). MCF7 tumor-bearing mice remained tumor free for up to 60 d of observation with i.duc IT, whereas the HB21 antibody alone or intraperitoneal IT treatment had minimal/no antitumor effects. These and similar findings in the SUM225 MIND model were substantiated by analysis of mammary gland whole mounts, histology, and immunohistochemistry for the proteins Ki67, CD31, CD71 (TFR), and Ku80. This study provides a strong preclinical foundation for conducting feasibility and safety trials in patients with stage 0 breast cancer.


Subject(s)
ADP Ribose Transferases , Bacterial Toxins , Breast Neoplasms , Carcinoma, Intraductal, Noninfiltrating , Exotoxins , Immunotoxins , Molecular Targeted Therapy , Receptors, Transferrin , Virulence Factors , ADP Ribose Transferases/administration & dosage , ADP Ribose Transferases/metabolism , Animals , Antibodies, Monoclonal/administration & dosage , Bacterial Toxins/administration & dosage , Breast Neoplasms/therapy , Carcinoma, Intraductal, Noninfiltrating/therapy , Exotoxins/administration & dosage , Female , Humans , Immunotoxins/administration & dosage , MCF-7 Cells , Mice , Mice, Inbred NOD , Mice, SCID , Receptors, Transferrin/metabolism , Virulence Factors/administration & dosage , Pseudomonas aeruginosa Exotoxin A
6.
Antimicrob Agents Chemother ; 66(4): e0239921, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35293784

ABSTRACT

Cryptococcosis is a devastating fungal disease associated with high morbidity and mortality even when treated with antifungal drugs. Bionized nanoferrite (BNF) nanoparticles are powerful immunomodulators, but their efficacy for infectious diseases has not been investigated. Administration of BNF nanoparticles to mice with experimental cryptococcal pneumonia altered the outcome of infection in a dose response manner as measured by CFU and survival. The protective effects were higher at lower doses, with reductions in IL-2, IL-4, and TNF-α, consistent with immune modulation whereby reductions in inflammation translate into reduced host damage, clearance of infection, and longer survival.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Animals , Cryptococcosis/drug therapy , Cryptococcosis/microbiology , Inflammation , Mice , Tumor Necrosis Factor-alpha
7.
Adv Drug Deliv Rev ; 163-164: 65-83, 2020.
Article in English | MEDLINE | ID: mdl-32603814

ABSTRACT

Significant research and preclinical investment in cancer nanomedicine has produced several products, which have improved cancer care. Nevertheless, there exists a perception that cancer nanomedicine 'has not lived up to its promise' because the number of approved products and their clinical performance are modest. Many of these analyses do not consider the long clinical history and many clinical products developed from iron oxide nanoparticles. Iron oxide nanoparticles have enjoyed clinical use for about nine decades demonstrating safety, and considerable clinical utility and versatility. FDA-approved applications of iron oxide nanoparticles include cancer diagnosis, cancer hyperthermia therapy, and iron deficiency anemia. For cancer nanomedicine, this wealth of clinical experience is invaluable to provide key lessons and highlight pitfalls in the pursuit of nanotechnology-based cancer therapeutics. We review the clinical experience with systemic liposomal drug delivery and parenteral therapy of iron deficiency anemia (IDA) with iron oxide nanoparticles. We note that the clinical success of injectable iron exploits the inherent interaction between nanoparticles and the (innate) immune system, which designers of liposomal drug delivery seek to avoid. Magnetic fluid hyperthermia, a cancer therapy that harnesses magnetic hysteresis heating is approved for treating humans only with iron oxide nanoparticles. Despite its successful demonstration to enhance overall survival in clinical trials, this nanotechnology-based thermal medicine struggles to establish a clinical presence. We review the physical and biological attributes of this approach, and suggest reasons for barriers to its acceptance. Finally, despite the extensive clinical experience with iron oxide nanoparticles new and exciting research points to surprising immune-modulating potential. Recent data demonstrate the interactions between immune cells and iron oxide nanoparticles can induce anti-tumor immune responses. These present new and exciting opportunities to explore additional applications with this venerable technology. Clinical applications of iron oxide nanoparticles present poignant case studies of the opportunities, complexities, and challenges in cancer nanomedicine. They also illustrate the need for revised paradigms and multidisciplinary approaches to develop and translate nanomedicines into clinical cancer care.


Subject(s)
Drug Delivery Systems/methods , Hyperthermia, Induced/methods , Magnetic Iron Oxide Nanoparticles/administration & dosage , Neoplasms/drug therapy , Humans , Immune System/drug effects , Immune System/metabolism , Immunotherapy/methods
9.
Sci Adv ; 6(13): eaay1601, 2020 03.
Article in English | MEDLINE | ID: mdl-32232146

ABSTRACT

The factors that influence nanoparticle fate in vivo following systemic delivery remain an area of intense interest. Of particular interest is whether labeling with a cancer-specific antibody ligand ("active targeting") is superior to its unlabeled counterpart ("passive targeting"). Using models of breast cancer in three immune variants of mice, we demonstrate that intratumor retention of antibody-labeled nanoparticles was determined by tumor-associated dendritic cells, neutrophils, monocytes, and macrophages and not by antibody-antigen interactions. Systemic exposure to either nanoparticle type induced an immune response leading to CD8+ T cell infiltration and tumor growth delay that was independent of antibody therapeutic activity. These results suggest that antitumor immune responses can be induced by systemic exposure to nanoparticles without requiring a therapeutic payload. We conclude that immune status of the host and microenvironment of solid tumors are critical variables for studies in cancer nanomedicine and that nanoparticle technology may harbor potential for cancer immunotherapy.


Subject(s)
Breast Neoplasms/immunology , Breast Neoplasms/pathology , Immunoconjugates , Immunomodulation , Lymphocytes, Tumor-Infiltrating/immunology , Nanoparticles , T-Lymphocytes/immunology , Tumor Microenvironment/immunology , Animals , Antineoplastic Agents, Immunological/pharmacology , Biomarkers, Tumor , Biopsy , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Immunoconjugates/pharmacology , Immunomodulation/drug effects , Iron/metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Mice , Protein Binding , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Tumor Burden , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
10.
Bio Protoc ; 10(22): e3822, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33659474

ABSTRACT

A clear understanding of nanoparticle interactions with living systems at the cellular level is necessary for developing nanoparticle-based therapeutics. Magnetic iron oxide nanoparticles provide unique opportunities to study these interactions because of their responsiveness to magnetic fields. This enables sorting of cells containing nanoparticles from in vivo models. Once sorted, flow cytometry can identify individual cell types, which can be further analyzed for iron content, gene or protein expression changes associated with nanoparticle uptake, and for other biological responses at a molecular level. Here we provide a detailed protocol to sort and identify cells in the tumor microenvironment that have internalized magnetic iron oxide nanoparticles following intravenous administration.

11.
Front Oncol ; 10: 581459, 2020.
Article in English | MEDLINE | ID: mdl-33520697

ABSTRACT

Blocking tumor angiogenesis is an appealing therapeutic strategy, but to date, success has been elusive. We previously identified HEYL, a downstream target of Notch signaling, as an overexpressed gene in both breast cancer cells and as a tumor endothelial marker, suggesting that HEYL overexpression in both compartments may contribute to neoangiogenesis. Carcinomas arising in double transgenic Her2-neu/HeyL mice showed higher tumor vessel density and significantly faster growth than tumors in parental Her2/neu mice. Providing mechanistic insight, microarray-based mRNA profiling of HS578T-tet-off-HEYL human breast cancer cells revealed upregulation of several angiogenic factors including CXCL1/2/3 upon HEYL expression, which was validated by RT-qPCR and protein array analysis. Upregulation of the cytokines CXCL1/2/3 occurred through direct binding of HEYL to their promoter sequences. We found that vessel growth and migration of human vascular endothelial cells (HUVECs) was promoted by conditioned medium from HS578T-tet-off-HEYL carcinoma cells, but was blocked by neutralizing antibodies against CXCL1/2/3. Supporting these findings, suppressing HEYL expression using shRNA in MDA-MB-231 cells significantly reduced tumor growth. In addition, suppressing the action of proangiogenic cytokines induced by HEYL using a small molecule inhibitor of the CXCl1/2/3 receptor, CXCR2, in combination with the anti-VEGF monoclonal antibody, bevacizumab, significantly reduced tumor growth of MDA-MB-231 xenografts. Thus, HEYL expression in tumor epithelium has a profound effect on the vascular microenvironment in promoting neoangiogenesis. Furthermore, we show that lack of HEYL expression in endothelial cells leads to defects in neoangiogenesis, both under normal physiological conditions and in cancer. Thus, HeyL-/- mice showed impaired vessel outgrowth in the neonatal retina, while the growth of mammary tumor cells E0771 was retarded in syngeneic HeyL-/- mice compared to wild type C57/Bl6 mice. Blocking HEYL's angiogenesis-promoting function in both tumor cells and tumor-associated endothelium may enhance efficacy of therapy targeting the tumor vasculature in breast cancer.

12.
Int J Hyperthermia ; 37(3): 59-75, 2020 12.
Article in English | MEDLINE | ID: mdl-33426997

ABSTRACT

OBJECTIVE: Toxicity from off-target heating with magnetic hyperthermia (MHT) is generally assumed to be understood. MHT research focuses on development of more potent heating magnetic iron oxide nanoparticles (MIONs), yet our understanding of factors that define biodistribution following systemic delivery remains limited. Preclinical development relies on mouse models, thus understanding off-target heating with MHT in mice provides critical knowledge for clinical development. METHODS: Eight-week old female nude mice received a single tail vein injection of bionized nanoferrite (BNF) MIONs or a counterpart labeled with a polyclonal human antibody (BNF-IgG) at 1 mg, 3 mg or 5 mg Fe/mouse on day 1. On day 3, mice were exposed to an alternating magnetic field (AMF) having amplitude of 32, 48 or 64 kA/m at ∼145 kHz for 20 min. Twenty-four hours later, blood, livers and spleens were harvested and analyzed. RESULTS: Damage to livers was apparent by histology and serum liver enzymes following MHT with BNF or BNF-IgG at doses ≥3 mg Fe and AMF amplitudes ≥48 kA/m. Differences between effects with BNF vs. BNF-IgG at a dose of 3 mg Fe were noted in all measures, with less damage and increased survival occurring in mice injected with BNF-IgG. Necropsies revealed severe damage to duodenum and upper small intestines, likely the immediate cause of death at the highest MHT doses. CONCLUSION: Results demonstrate that the MION coating affects biodistribution, which in turn determines off-target effects. Developments to improve heating capabilities of MIONs may be clinically irrelevant without better control of biodistribution.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Animals , Female , Mice , Hyperthermia, Induced/adverse effects , Magnetic Fields , Magnetic Iron Oxide Nanoparticles , Mice, Nude , Tissue Distribution
13.
Int J Hyperthermia ; 36(sup1): 47-63, 2019 11.
Article in English | MEDLINE | ID: mdl-31795835

ABSTRACT

Purpose: Enhancing immune responses in triple negative breast cancers (TNBCs) remains a challenge. Our study aimed to determine whether magnetic iron oxide nanoparticle (MION) hyperthermia (HT) can enhance abscopal effects with radiotherapy (RT) and immune checkpoint inhibitors (IT) in a metastatic TNBC model.Methods: One week after implanting 4T1-luc cells into the mammary glands of BALB/c mice, tumors were treated with RT (3 × 8 Gy)±local HT, mild (HTM, 43 °C/20 min) or partially ablative (HTAbl, 45 °C/5 min plus 43 °C/15 min),±IT with anti-PD-1 and anti-CTLA-4 antibodies (both 4 × 10 mg/kg, i.p.). Tumor growth was measured daily. Two weeks after treatment, lungs and livers were harvested for histopathology evaluation of metastases.Results: Compared to untreated controls, all treatment groups demonstrated a decreased tumor volume; however, when compared against surgical resection, only RT + HTM+IT, RT + HTAbl+IT and RT + HTAbl had similar or smaller tumors. These cohorts showed more infiltration of CD3+ T-lymphocytes into the primary tumor. Tumor growth effects were partially reversed with T-cell depletion. Combinations that proved most effective for primary tumors generated modest reductions in numbers of lung metastases. Conversely, numbers of lung metastases showed potential to increase following HT + IT treatment, particularly when compared to RT. Compared to untreated controls, there was no improvement in survival with any treatment.Conclusions: Single-fraction MION HT added to RT + IT improved local tumor control and recruitment of CD3+ T-lymphocytes, with only a modest effect to reduce lung metastases and no improvement in overall survival. HT + IT showed potential to increase metastatic dissemination to lungs.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/radiotherapy , Animals , Antibodies, Monoclonal/pharmacology , Combined Modality Therapy , Disease Models, Animal , Female , Humans , Magnetite Nanoparticles , Mice , Neoplasm Metastasis , Transfection
14.
Angew Chem Int Ed Engl ; 58(48): 17158-17162, 2019 11 25.
Article in English | MEDLINE | ID: mdl-31591797

ABSTRACT

Glucose transporters play an essential role in cancer cell proliferation and survival and have been pursued as promising cancer drug targets. Using microarrays of a library of new macrocycles known as rapafucins, which were inspired by the natural product rapamycin, we screened for new inhibitors of GLUT1. We identified multiple hits from the rapafucin 3D microarray and confirmed one hit as a bona fide GLUT1 ligand, which we named rapaglutin A (RgA). We demonstrate that RgA is a potent inhibitor of GLUT1 as well as GLUT3 and GLUT4, with an IC50 value of low nanomolar for GLUT1. RgA was found to inhibit glucose uptake, leading to a decrease in cellular ATP synthesis, activation of AMP-dependent kinase, inhibition of mTOR signaling, and induction of cell-cycle arrest and apoptosis in cancer cells. Moreover, RgA was capable of inhibiting tumor xenografts in vivo without obvious side effects. RgA could thus be a new chemical tool to study GLUT function and a promising lead for developing anticancer drugs.


Subject(s)
Antineoplastic Agents/chemistry , Glucose Transport Proteins, Facilitative/antagonists & inhibitors , Macrolides/pharmacology , Small Molecule Libraries/chemistry , A549 Cells , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Drug Screening Assays, Antitumor , Humans , MCF-7 Cells , Macrolides/chemistry , Molecular Structure , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Protein Array Analysis , Signal Transduction , Sirolimus/chemistry , Structure-Activity Relationship , TOR Serine-Threonine Kinases/metabolism , Tacrolimus/chemistry , Tacrolimus Binding Proteins
15.
Int J Hyperthermia ; 36(1): 712-720, 2019.
Article in English | MEDLINE | ID: mdl-31345068

ABSTRACT

Purpose: A proposed mechanism for the enhanced effectiveness of hyperthermia and doxorubicin (Dox) combinations is increased intracellular Dox concentrations resulting from heat-induced cell stress. The purpose of this study was to determine whether specific varied Dox and heat combinations produce measurable effects greater than the additive combination, and whether these effects can be attributed to heat-induced increases in intracellular Dox concentrations. Methods: HCT116, HT29 and CT26 cells were exposed to Dox and water bath heating independently. A clonogenic survival assay was used to determine cell killing and intracellular Dox concentrations were measured in HCT116 cells with mass spectrometry. Cells were exposed to heating at 42 °C (60 min) and 0.5 µg/ml of Dox at varying intervals. Synergy was determined by curve-fitting and isobologram analysis. Results: All cell lines displayed synergistic effects of combined heating and Dox. A maximum synergistic effect was achieved with simultaneous cell exposure to Dox and heat. For exposures at 42 °C, the synergistic effect was most pronounced at Dox concentrations <0.5 µg/ml. Increased intracellular concentrations of Dox in HCT116 cells caused by heat-stress did not generate a concomitant thermal enhancement. Conclusions: Simultaneous exposure of HCT116 cells to heating and Dox is more effective than sequential exposure. Heat-induced cell responses are accompanied by increased intracellular Dox concentrations; however, clonogenic survival data do not support this as the cause for synergistic cytotoxicity.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Doxorubicin/administration & dosage , Hot Temperature , Biological Transport , Cell Death , Cell Line, Tumor , Humans
16.
Carcinogenesis ; 40(7): 903-913, 2019 07 20.
Article in English | MEDLINE | ID: mdl-31046118

ABSTRACT

Mammographic screening for breast cancer has led to increased detection of ductal carcinoma in situ (DCIS) and a reappraisal of the necessity of aggressive treatment with their attendant toxicities for a preneoplastic lesion. Fulvestrant, a selective estrogen receptor degrader, is very effective in the treatment of estrogen receptor positive (ER+) breast cancer, but delivery by the painful intramuscular (i.m) route is limiting. We hypothesized that intraductal (i.duc) administration of fulvestrant will provide a direct, safe and effective treatment for DCIS. Mice bearing mammary ductal xenografts of ER+, luciferase-tagged MCF-7 breast cancer cells were administered vehicle or fulvestrant i.m or i.duc. I.duc MCF-7-luc tumors in mice treated with fulvestrant i.duc or i.m grew significantly slower than vehicle control. Whole mount analysis and histopathology showed that i.duc fulvestrant achieved significantly larger cancer-free areas. Western blot analysis showed reduced levels of estrogen receptor alpha (ERα) and its downstream targets, c-Myc and Cyclin D1, and increased levels of ERß, which is known to inhibit ERα function. Immunohistochemical analysis of tumor sections showed that Ki67 and ERα protein levels decreased by 3-fold, and neoangiogenesis was inhibited by i.duc fulvestrant treatment. I.duc fulvestrant also reduced outgrowth of ERα+, autochthonous N-methyl-N-nitrosourea-induced mammary tumors in rats. Overall, we have shown that i.duc fulvestrant was significantly more effective than, or equivalent in action to i.m fulvestrant in two preclinical models of breast cancer. These studies provide evidence for a novel and safe route for fulvestrant therapy of DCIS and prevention of breast cancer. This preclinical study provides a strong basis for conducting clinical trials for DCIS and early breast cancer.


Subject(s)
Antineoplastic Agents, Hormonal/administration & dosage , Breast Neoplasms/drug therapy , Carcinoma, Intraductal, Noninfiltrating/drug therapy , Estrogen Receptor alpha/antagonists & inhibitors , Fulvestrant/administration & dosage , Animals , Breast Neoplasms/pathology , Carcinoma, Intraductal, Noninfiltrating/pathology , Estrogen Receptor alpha/metabolism , Female , Humans , Injections, Intralesional , MCF-7 Cells , Mammary Glands, Animal/pathology , Mice , Rats , Xenograft Model Antitumor Assays
17.
Sci Rep ; 8(1): 4916, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29559734

ABSTRACT

Citrate-stabilized iron oxide magnetic nanoparticles (MNPs) were coated with one of carboxymethyl dextran (CM-dextran), polyethylene glycol-polyethylene imine (PEG-PEI), methoxy-PEG-phosphate+rutin, or dextran. They were characterized for size, zeta potential, hysteresis heating in an alternating magnetic field, dynamic magnetic susceptibility, and examined for their distribution in mouse organs following intravenous delivery. Except for PEG-PEI-coated nanoparticles, all coated nanoparticles had a negative zeta potential at physiological pH. Nanoparticle sizing by dynamic light scattering revealed an increased nanoparticle hydrodynamic diameter upon coating. Magnetic hysteresis heating changed little with coating; however, the larger particles demonstrated significant shifts of the peak of complex magnetic susceptibility to lower frequency. 48 hours following intravenous injection of nanoparticles, mice were sacrificed and tissues were collected to measure iron concentration. Iron deposition from nanoparticles possessing a negative surface potential was observed to have highest accumulation in livers and spleens. In contrast, iron deposition from positively charged PEG-PEI-coated nanoparticles was observed to have highest concentration in lungs. These preliminary results suggest a complex interplay between nanoparticle size and charge determines organ distribution of systemically-delivered iron oxide magnetic nanoparticles.


Subject(s)
Ferric Compounds/metabolism , Liver/metabolism , Lung/metabolism , Nanoparticles/metabolism , Spleen/metabolism , Administration, Intravenous , Animals , Ferric Compounds/chemistry , Hot Temperature , Magnetic Phenomena , Male , Mice , Mice, Nude , Nanoparticles/chemistry , Particle Size , Polyethylene Glycols/chemistry , Static Electricity
18.
Cancer Res ; 76(15): 4443-56, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27302171

ABSTRACT

Development of drug resistance is a major factor limiting the continued success of cancer chemotherapy. To overcome drug resistance, understanding the underlying mechanism(s) is essential. We found that HOXC10 is overexpressed in primary carcinomas of the breast, and even more significantly in distant metastasis arising after failed chemotherapy. High HOXC10 expression correlates with shorter recurrence-free and overall survival in patients with estrogen receptor-negative breast cancer undergoing chemotherapy. We found that HOXC10 promotes survival in cells treated with doxorubicin, paclitaxel, or carboplatin by suppressing apoptosis and upregulating NF-κB Overexpressed HOXC10 increases S-phase-specific DNA damage repair by homologous recombination (HR) and checkpoint recovery in cells at three important phases. For double-strand break repair, HOXC10 recruits HR proteins at sites of DNA damage. It enhances resection and lastly, it resolves stalled replication forks, leading to initiation of DNA replication following DNA damage. We show that HOXC10 facilitates, but is not directly involved in DNA damage repair mediated by HR. HOXC10 achieves integration of these functions by binding to, and activating cyclin-dependent kinase, CDK7, which regulates transcription by phosphorylating the carboxy-terminal domain of RNA polymerase II. Consistent with these findings, inhibitors of CDK7 reverse HOXC10-mediated drug resistance in cultured cells. Blocking HOXC10 function, therefore, presents a promising new strategy to overcome chemotherapy resistance in breast cancer. Cancer Res; 76(15); 4443-56. ©2016 AACR.


Subject(s)
Breast Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Homeodomain Proteins/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , DNA Repair , Female , Humans
19.
Tissue Eng Part C Methods ; 22(4): 398-407, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26831041

ABSTRACT

A significant challenge in oncology is the need to develop in vitro models that accurately mimic the complex microenvironment within and around normal and diseased tissues. Here, we describe a self-folding approach to create curved hydrogel microstructures that more accurately mimic the geometry of ducts and acini within the mammary glands, as compared to existing three-dimensional block-like models or flat dishes. The microstructures are composed of photopatterned bilayers of poly (ethylene glycol) diacrylate (PEGDA), a hydrogel widely used in tissue engineering. The PEGDA bilayers of dissimilar molecular weights spontaneously curve when released from the underlying substrate due to differential swelling ratios. The photopatterns can be altered via AutoCAD-designed photomasks so that a variety of ductal and acinar mimetic structures can be mass-produced. In addition, by co-polymerizing methacrylated gelatin (methagel) with PEGDA, microstructures with increased cell adherence are synthesized. Biocompatibility and versatility of our approach is highlighted by culturing either SUM159 cells, which were seeded postfabrication, or MDA-MB-231 cells, which were encapsulated in hydrogels; cell viability is verified over 9 and 15 days, respectively. We believe that self-folding processes and associated tubular, curved, and folded constructs like the ones demonstrated here can facilitate the design of more accurate in vitro models for investigating ductal carcinoma.


Subject(s)
Carcinoma, Ductal/metabolism , Carcinoma, Ductal/pathology , Hydrogels/chemistry , Models, Biological , Cell Adhesion , Cell Line, Tumor , Cells, Immobilized/metabolism , Cells, Immobilized/pathology , Humans , Polyethylene Glycols/chemistry
20.
Cancer Res ; 76(7): 2013-2024, 2016 04 01.
Article in English | MEDLINE | ID: mdl-26787836

ABSTRACT

Efforts to induce the differentiation of cancer stem cells through treatment with all-trans retinoic acid (ATRA) have yielded limited success, partially due to the epigenetic silencing of the retinoic acid receptor (RAR)-ß The histone deacetylase inhibitor entinostat is emerging as a promising antitumor agent when added to the standard-of-care treatment for breast cancer. However, the combination of epigenetic, cellular differentiation, and chemotherapeutic approaches against triple-negative breast cancer (TNBC) has not been investigated. In this study, we found that combined treatment of TNBC xenografts with entinostat, ATRA, and doxorubicin (EAD) resulted in significant tumor regression and restoration of epigenetically silenced RAR-ß expression. Entinostat and doxorubicin treatment inhibited topoisomerase II-ß (TopoII-ß) and relieved TopoII-ß-mediated transcriptional silencing of RAR-ß Notably, EAD was the most effective combination in inducing differentiation of breast tumor-initiating cells in vivo Furthermore, gene expression analysis revealed that the epithelium-specific ETS transcription factor-1 (ESE-1 or ELF3), known to regulate proliferation and differentiation, enhanced cell differentiation in response to EAD triple therapy. Finally, we demonstrate that patient-derived metastatic cells also responded to treatment with EAD. Collectively, our findings strongly suggest that entinostat potentiates doxorubicin-mediated cytotoxicity and retinoid-driven differentiation to achieve significant tumor regression in TNBC. Cancer Res; 76(7); 2013-24. ©2016 AACR.


Subject(s)
Epigenesis, Genetic/genetics , Neoplastic Stem Cells/metabolism , Triple Negative Breast Neoplasms/genetics , Cell Differentiation , Cell Line, Tumor , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...